交友関係データと脳波データからの 関連性自動抽出

日本大学文理学部情報システム解析学科

谷聖一研究室 小林 彩

目次

- 1. 背景•研究動機
- 2. クラスタリング
- 3. マイニング
- 4. マイニング結果
- 5. 考察

目次

- 1. 背景•研究動機
- 2. クラスタリング
- 3. マイニング
- 4. マイニング結果
- 5. 考察

背景 · 研究動機1

コンピュータゲームやコンピュータ操作等が,人間の脳に与える影響について議論されている.

- ・影響がない.
- ・影響がある.
 - ・好影響の研究結果(野内ら 2011年)
 - 任天堂の『脳トレ』ソフトが, 認知機能の一部向上の一助となると主張。
 - ・悪影響の研究結果(森昭雄 2002年)
 - 独自開発の簡易脳波計による, ゲームプレイ中の脳波の測定から, 脳に悪影響を及ぼすと主張。

※本研究では各主張の是非について言及はしない。

4 / 33

背景·研究動機2

2007年9月,日本大学文理学部のプロジェクトチームが,埼玉県内の小学生5,6年生103人を対象とした調査を実施.

調査内容:性別、脳波、交友関係、ゲームのプレイ時間

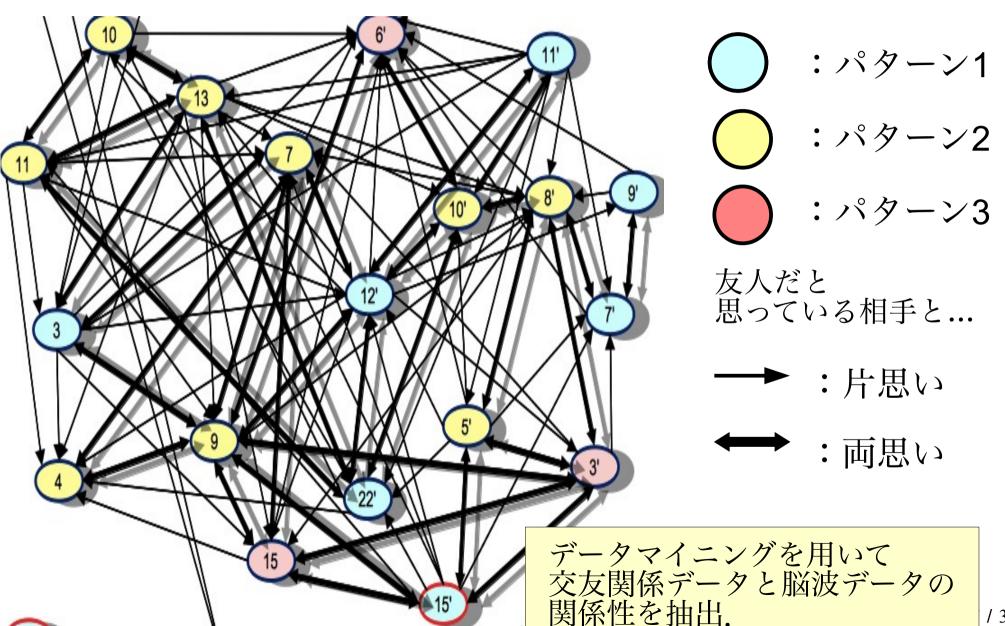
※ゲームのプレイ時間 携帯型ゲーム機時間(平均的な1日のプレイ時間) 据え置き型ゲーム機時間(平均的な1日のプレイ時間) 最高時間(1日あたり最も長い時間ゲーム機で遊んだ時間)

調査者が小学生を対象とした理由:

小学生の交遊関係は同じクラス,同じ学年でほぼ完結しているため,関係図を作るのが容易である.

背景·研究動機3

調査者の仮説:


「長時間一緒にゲームをしている友達同士は似た傾向を持つ」

次の見解に基づく.

小学生は比較的テレビゲームで遊ぶ時間が長く, 友達と一緒にゲームをして遊ぶ機会も多い.

脳波測定の結果と友達関係を照らし合わせて検討すれば,何らかの知見が得られるのではないか.

背景 · 研究動機4

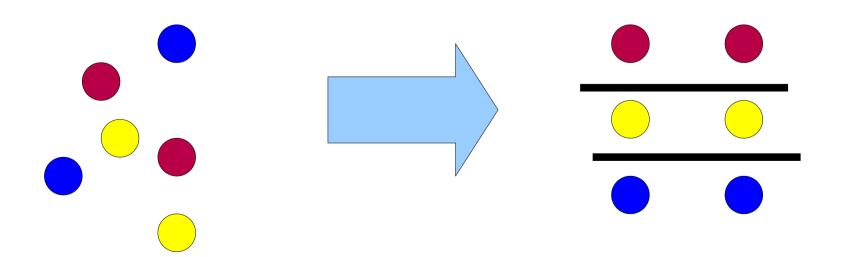
データマイニングとは

- •knowledge-discovery in databases (データベースからの知識発見) KDD とも呼ばれる.
- ・多量のデータから有用な知識を発掘する技術の総称.

使用例:顧客管理情報,売り上げデータ...

手法:頻出パターン抽出、クラス分類、

回帰分析、クラスタリング

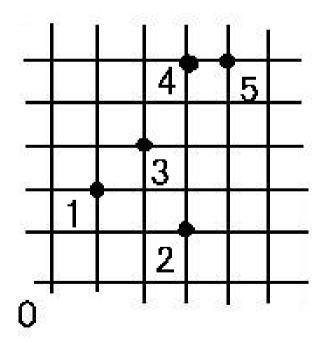

目次

- 1. 背景•研究動機
- 2. クラスタリング
- 3. マイニング
- 4. マイニング結果
- 5. 考察

クラスタリング1

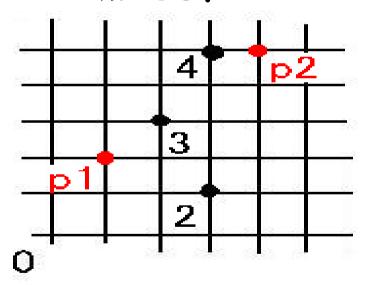
データの集合をクラスタと呼ぶグループに分ける.

2つのデータが、 同一のクラスタに属していれば互いに似ている. 異なるクラスタに属していれば互いに似ていない.



クラスタリング2

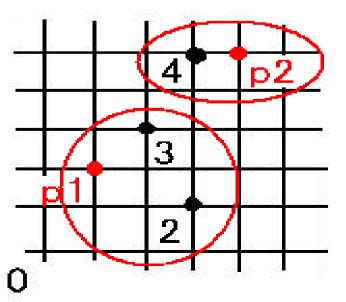
- •最遠点法
- •最短距離法
- k-medoids法
- ※k個のクラスタに分類する. ここでは、k=2のアルゴリズムを紹介する.


最遠点法1

 任意の1点 p1を Sからとり, P={p1}とする.

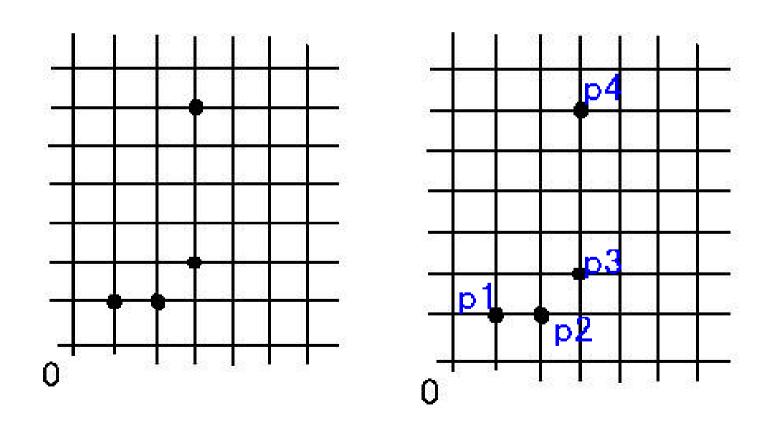
S:上記5点からなる集合

Sのうちで、
 Pからの距離がもっとも遠い点を計算し、
 Pに加える。



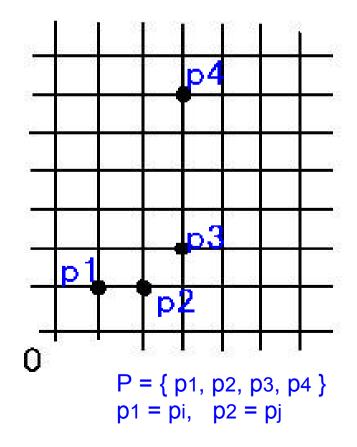
最遠点法2

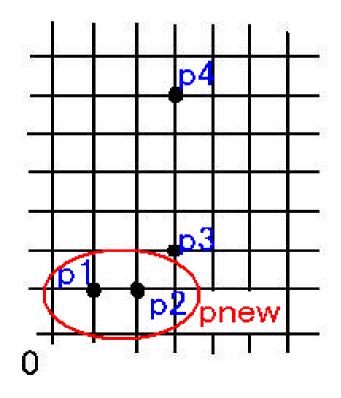
- 3. Pのサイズが k 未満なら 2 に戻る. (k=2) $P = \{1,5\}$
- 4. Pの点に対応した k 個のクラスタを作る. このとき S の各点は最も近い P の点に 対応したクラスタに分類される.


$$d(p1, 2) = \sqrt{(1-3)^2 + (2-1)^2} = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$$

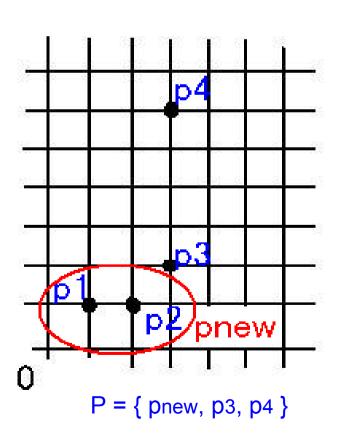
 $d(p2, 2) = \sqrt{(4-3)^2 + (6-1)^2} = \sqrt{1^2 + 5^2} = \sqrt{26}$

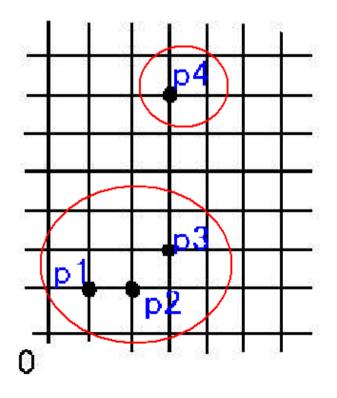
よって、{1,2,3},{4,5}


最短距離法1


入力:各データを単一要素のクラスタとし, クラスタ集合 $P = \{ p1, ..., pn \}$ とする.

最短距離法2


- 1. Pの各クラスタ間の 距離を求め,最も距離の 短いクラスタのペア pi,pjを選択.
- 2. pi と pj を併合し, クラスタ pnew を作成.



最短距離法3

3. Pに pnew を追加し, pi, pj を削除.

4. クラスタ数が 設定した数に なっていなければ, 1に戻る.

k-medoids法1

入力:各データを単一要素のクラスタとし, クラスタ集合 $D = \{ d_1, ..., d_n \}$ とする.

例: クラスタ集合 $D = \{1, 2, 4, 7, 8, 10\}$ とする. ※各データ間の距離は各データの差.

1. Dの各要素に対してクラスタ P1,..., Pkを ランダムに選び、各々そのクラスタの要素とする.

 $P_1 = \{ 1, 4, 7 \}, P_2 = \{ 2, 8, 10 \}$

k-medoids法2

- 2. 各クラスタ Piの medoid を mi とする.
 - ※ medoid はクラスタ内の他の点への距離の合計が最小となる点.

$$P_1 = \{ 1, 4, 7 \}$$
, $P_2 = \{ 2, 8, 10 \}$
medoid $m_1 = 4$, medoid $m_2 = 8$

3. D = { d1, ..., dn } の各データ di に対して, di から medoid への距離が最小となるクラスタを選び, di をそのクラスタの要素とする.

$$P_1 = \{ 1, 2, 4 \}, P_2 = \{ 7, 8, 10 \}$$

4. 属するクラスタが変わった要素が $D = \{ d_1, ..., d_n \}$ に存在すれば2に戻る.

k-medoids法3

- 2. 各クラスタ Piの medoid を mi とする.
 - ※ medoid はクラスタ内の他の点への距離の合計が最小となる点.

$$P_1 = \{ 1, 2, 4 \}$$
, $P_2 = \{ 7, 8, 10 \}$
medoid $m_1 = 2$, medoid $m_2 = 8$

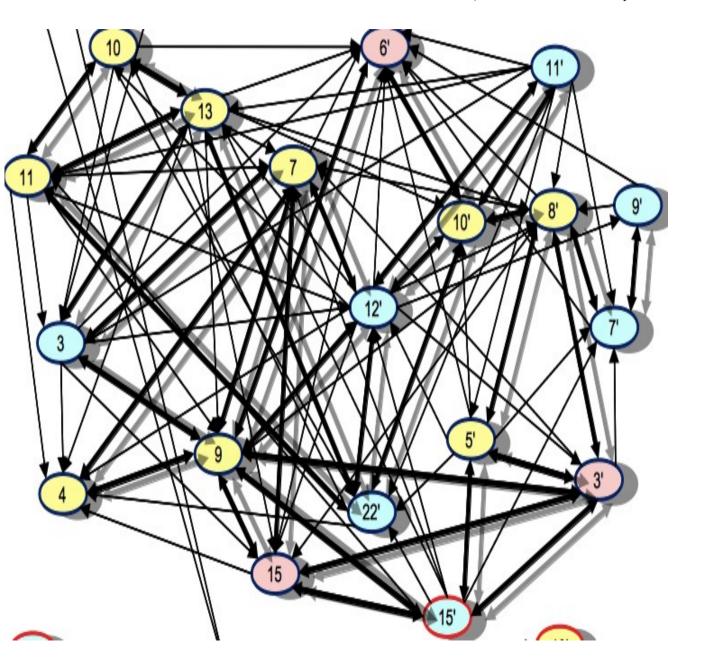
3. D = { d1, ..., dn } の各データ di に対して, di から medoid への距離が最小となるクラスタを選び, di をそのクラスタへの要素とする.

$$P_1 = \{ 1, 2, 4 \}, P_2 = \{ 7, 8, 10 \}$$

4. 属するクラスタが変わった要素が $D = \{ d_1, ..., d_n \}$ に存在すれば2に戻る.

終了

目次


- 1. 背景•研究動機
- 2. クラスタリング
- 3. マイニング
- 4. マイニング結果
- 5. 考察

マイニング

実験内容

- 1. 各個人の3つのプレイ時間を用いて, 最短距離法, k-meroids法, 最遠点法で それぞれk=3, 5, 10のクラスタに分ける.
 - ・ 携帯型ゲーム機時間(平均的な1日のプレイ時間)
 - ・据え置き型ゲーム機時間(平均的な1日のプレイ時間)
 - ・ 最高時間 (1日あたり最も長い時間ゲーム機で遊んだ時間)
- 2. 各クラスタに現れる, 脳波パターンの頻度を計算.
- 3. ゲームプレイ時間と脳波パターンの関連性を上記1と2から考察.

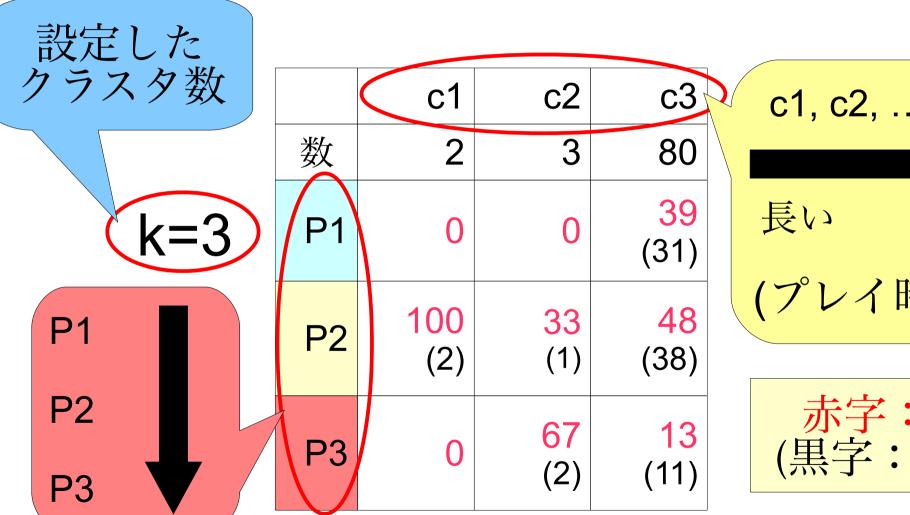
マイニング

():パターン1

:パターン2

:パターン3

友人だと 思っている相手と...


→ : 片思い

→ : 両思い

目次

- 1. 背景•研究動機
- 2. クラスタリング
- 3. マイニング
- 4. マイニング結果
- 5. 考察

マイニング結果

c1, c2, ...,cn 短い プレイ時間)

> 赤字:% (黒字:人)

※調査プロジェクトチームによる判定

マイニング結果~最遠点法1~

		c1	c2	с3
	数	2	3	80
k=3	P1	0	0	39 (31)
	P2	100 (2)	33 (1)	48 (38)
	P3	0	67 (2)	13 (11)

k=5		c1	c2	сЗ	c4	c5
	数	2	3	17	5	58
	P1	0	0	29 (5)	60 (3)	40 (23)
	P2	1 <mark>00</mark> (2)	33 (1)	47 (8)	40 (2)	48 (28)
	P3	0	67 (2)	24 (4)	0	12 (7)

マイニング結果~最遠点法2~

		c1	c2	c3	c4	c5	с6	c7	c8	с9	c10
k=10	数	2	2	14	5	3	4	7	1	29	18
	P1	0	0	21 (3)	60 (3)	67 (2)	75 (3)	57 (4)	0	31 (9)	39 (7)
	P2	100 (2)	50 (1)	50 (7)	40 (2)	33 (1)		29 (2)	0	55 (16)	50 (9)
	P3	0	50 (1)	29 (4)	0	0	0	14 (1)	100 (1)		11 (2)

マイニング結果 ~最短距離法1~

k=3	数	1	7	77
	P1	0	29 (2)	37 (29)
	P2	100 (1)	42 (3)	48 (37)
	P3	0	29 (2)	14 (11)

		c1	c2	сЗ	c4	c5
k=5	数	1	1	5	1	77
	P1	0	0	40 (2)	0	37 (29)
	P2	100 (1)	100 (1)	20 (1)	100 (1)	48 (37)
	P3	0	0	40 (2)	0	14 (11)

マイニング結果~最短距離法2~

		CI	CZ	C3	C4	CO	СО	C/	Co	C9	CIU
k=10	数	1	1	1	3	1	1	2	25	3	47
	P1	100 (1)	0	100 (1)	0	0	0	50 (1)	44 (11)	33 (1)	34 (16)
	P2	0	100 (1)	0	67 (2)	100 (1)	100 (1)	50 (1)	44 (11)	0	51 (24)
	P3	0	0	0	33 (1)	0	0	0	12 (3)	67 (2)	14 (7)

マイニング結果 ~k-medoids法1~

		-		
k=3	数	21	30	34
	P1	33 (7)	37 (11)	38 (13)
	P2	48 (10)	43 (13)	53 (18)
	P3	19 (4)	20 (6)	(3)

c1 c2

		c1	c2	c3	c4	c5
<= 5	数	19	18	11	5	32
	P1	26 (5)	33 (6)	36 (4)	60 (3)	41 (13)
	P2	53 (10)	50 (9)	36 (4)	40 (2)	50 (16)
	P3	21 (4)	17 (3)	28 (3)	0	9 (3)

マイニング結果 ~k-medoids法2~

		c1	c2	c3	c4	c5	с6	с7	c8	c9	c10
k=10	数	5	11	11	10	6	2	8	5	13	14
	P1	40 (2)	9 (1)	27 (3)	40 (4)	33 (2)	50 (1)	75 (6)	40 (2)	23 (3)	50 (7)
	P2	60 (3)	64 (7)	55 (6)	30 (3)	33 (2)	50 (1)	25 (2)	60 (3)	62 (8)	43 (6)
	P3	0	27 (3)	18 (2)	30 (3)	33 (2)	0	0	0	15 (2)	7 (1)

目次

- 1. 背景•研究動機
- 2. クラスタリング
- 3. マイニング
- 4. マイニング結果
- 5. 考察

考察

仮説:

「長時間一緒にゲームをしている友達同士は似た傾向を持つ」

→ 3つの手法でプレイ時間の長さによる クラスタリングを行った結果から, プレイ時間と脳波パターンの関連性は 認められなかった.

ご清聴ありがとうございました.

脳波タイプ

※森昭雄 (2002年)による.

ノーマル脳タイプ:

テレビゲームにほとんど接しない人の脳波.

半ゲーム脳タイプ:

小学校低学年から大学生になるまでに, 週に3~4回,1日に3時間以下 テレビゲームに接している人の脳波.

ゲーム脳タイプ:

小学校入学前,もしくは 小学校低学年から大学生になるまでに, 週に3~4回,1日に2~7時間 テレビゲームに接している人の脳波.