有界の木幅を持つグラフの Tutte 多項式の計算と 彩色多項式への応用

computation Tutte polynomial of graphs of bouded treewidth and Its Aplication to chromatic polynomial

http://www.tani.cs.chs.nihon-u.ac.jp/g-2007/hiromu/

谷 研究室 中里 啓応 hiromu nakazato

概要

Artur Andrzejak の論文に書かれている splitting formulas という概念を使って、有界の木幅を持つグラフの Tutte 多項式の計算アルゴリズムを実装し、さらにそれを利用して彩色多項式を計算するプログラムを作成し、実験的に性能を評価する。

1 Tutte 多項式

Tutte 多項式とは、マトロイドと呼ばれるデータ構造の不変量である。

1.1 マトロイドとは?

ベクトル空間における線形独立集合のもつ組み合わせ的な性質は、マトロイドと呼ばれる抽象的な離散構造として表現される.マトロイドは単純な公理によって定義されているにもかかわらず、豊かな構造をもっており、基本的な離散構造と考えられている.とくに、離散最適化の分野においては、マトロイド構造と高速アルゴリズムは不可分の関係にある.

1.2 マトロイドの定義

有限集合 V 上の集合族 τ 、集合族 β 、集合族 C、集合 関数 ρ に関する条件を定義する .

au : 独立集合の全体

独立集合族 au は次の組合せ的な性質をもっている:

- (I1) 空集合は τ に含まれる、
- (I2) $Y \in \tau$ かつ $X \subseteq Y$ ならば $X \in \tau$ 、
- (I3) $X,Y\in au$ かつ |X|<|Y| ならば $X\cup\{y\}\in au$ を満たす $y\in Y\backslash X$ が存在する .

β:基(極大独立集合)の全体

基族 β は、(同時)交換公理と呼ばれる次の性質を持っている:

(B) 任意の $B, B' \in \beta$ と $i \in B \setminus B'$ に対して、 ある $j \in B' \setminus B$ が存在して $(B \setminus \{i\}) \cup \{j\} \in \beta$ かつ $(B' \cup \{i\}) \setminus \{j\} \in \beta$.

C:サーキット(極小従属集合)の全体

サーキット族 C は、次の性質をもっている:

- (C1) 空集合はC に含まれない、
- (C2) $C, C' \in \mathcal{C}$ かつ $C \subseteq C'$ ならば C = C'、
- (C3) 任意の相異なる $C,C'\in\mathcal{C}$ と任意の $i\in C\cap C'$ に対して、 $C''\subseteq (C\cup C')\setminus\{i\}$ を満たす $C''\in\mathcal{C}$ が存在する.

列ベクトル線形独立性は、

$$\rho(X) = rank\{a_i | j \in X\} \ (X \subseteq V)$$

で定義される階数関数 $\rho: 2^V$ **Z** によっても表現される.階数関数には次の性質がある:

- **(R1)** $0 \le \rho(X) \le |X|$,
- **(R2)** $X \subseteq Y \Longrightarrow \rho(X) \le \rho(Y)$,
- **(R3)** $\rho(X) + \rho(Y) \le \rho(X \cup Y) + \rho(X \cap Y)$.

この、(I) を満たす au,(B) を満たす eta,(C) を満たす \mathcal{C} ,(R) を満たす ρ は、離散構造としては、同値であって、互いに他を一意的に定めることが知られている.この意味で、条件 (I),(B),(C),(R) は同一の離散構造の表現である.これをマトロイドと呼び、 (V,τ) , (V,β) , $(V,\tau,\beta,\mathcal{C},\rho)$, (V,τ,ρ) などと書き表す.また、V を台集合、 τ を独立集合族、 β を基族、 \mathcal{C} をサーキット族、 ρ を階数関数と呼ぶ.

1.3 マトロイドの例

グラフGに対して、極大木(の辺集合)の全体 τ は上の条件(B)を満たす。したがって、Gの辺集合を台集合とし、 τ を基族とするマトロイドが定まる。このマトロイドにおけるサーキットはGにおける単純な閉路(サーキット)た対応している。

1.4 Tutte 多項式

 $A\subseteq E(G)$ の時、A の階数関数 r(A) は次のように定義できる(k(A) は、グラフ G:A(頂点集合 V=V(G)、辺集合 A)の連結成分の数)

$$r(A) = |V(G)| - k(A),$$

この、階数関数 $\mathbf{r}(\mathbf{A})$ は、マトロイドの条件 (\mathbf{R}) を満たすので、マトロイドである。このマトロイド M=(E,r)の Tutte 多項式 T(G;x,y) は以下のように二つの形式で表される、

$$T(M; x, y) = \sum_{A \subseteq E} (X - 1)^{r(E) - r(r)} (y - 1)^{|A| - r(A)}$$
$$= \sum_{i,j} t_{i,j} x^{i} y^{j}$$

2 The splitting formula

Tutte 多項式を上記の方法で求める場合、辺集合のすべての部分集合について考えなければならないので、計算時間が指数時間かかってしまう。そのために、有界の木幅を持つグラフを考え、木分解の深さ優先探索アルゴリズムに、Splitting formula という概念を組み込むことで、Tutte 多項式を多項式時間で求めていく。

2.1 準備

有限集合 Y の互いに素な空集合でない部分集合の集合 $\{Y_i|i\in\{1,\cdots,k\}\}\ (Y=\bigcup_{i=1}^kY_i,k\in\{1,\cdots,|Y|\})$ を Y の $partition\ P(Y)$ と呼ぶ。 Y_i を P(Y) の block と呼び、|P(Y)|=k は block 数を表す。もし、 $partition\ P_1(Y)$ のそれぞれの block が、 $partition\ P_2(Y)$ の block の和集合になるなら、 $P_2(Y)$ は、 $P_1(Y)$ の refinement である。 Y の全ての partition の集合 $\Gamma(Y)$ は、関係 $\prec(P_2(Y))$ が $P_1(Y)$ の refinement なら、 $P_1(Y)$ \prec $P_2(Y)$ によって順序付けすることが可能である。その時、 $(\Gamma(Y), \prec)$ は、lattice になり、Y の $partition\ lattice$ と呼ばれる。明らかに、 $(\Gamma(Y), \prec)$ の極大の要素は、|Y| の単集合の block からなる Y の $partition\ rotation$ である。r 個の要素を持つ集合の partition の数は、s(r) と表す。

2.2 Splitting formula

K と H は、 $E(K)\cap E(H)=\emptyset$ となる 2 つのグラフ とし、 $G=K\cup H$ とする。集合 $U=V(K)\cap V(H)$ を K と H の separator と呼ぶ。r=|U| とする。r=1 の 時は、T(K;x,y) に、T(H;x,y) をかけることによって G の Tutte 多項式が得られる。

r は少なくとも 2 以上とする。 $(\Gamma(U), \prec)$ は、U の $partition\ lattice\$ とする。s(r) は、 $\Gamma(U)$ の partition の数である。明らかに、 $(\Gamma(U), \prec)$ は G ではなく、r だけにより決まる。 $P_i, P_j \in \Gamma(U)$ に対して、 $P_j \prec P_i$ は、 $j \leqslant i$ となるように、 $\Gamma(U)$ の要素に添え字付けをする。 T_r は、(i,j) - 成分 が、 $t^{|P_i \land P_j|}(t$ は変数)となる行列である。 T_r の T_r^{-1} は、存在する。 T_r は、 T_r^{-1} の T_r^{-1} は、 T_r^{-1} の T_r^{-1} の T_r^{-1} に置き換た T_r^{-1} の T_r^{-1} の T

 $partition\ P\in\Gamma(U)$ に対して、P の同じ block の中にある、U のそれぞれの頂点の部分集合を同一視することで、K から得られるグラフを K//P と表す。同じように、 $partition\ P'$ に対して、H//P' も定義できる。 Theorem 1 G の Tutte 多項式は、以下の $the\ splitting\ formula\ で求めるられる。 the\ splitting\ formula:$

4.70

$$t(G; x, y) = (x - 1)^{-c(G)} k_r C_r h_r^{\mathrm{T}},$$

$$k_r = [(x-1)^{c(K//P_1)}t(K//P_1; x, y), \dots, (x-1)^{c(K//P_{s(r)})}t(K//P_{s(r)}; x, y)]$$

$$h_r = [(x-1)^{c(H//P_1)}t(H//P_1; x, y),$$

$$\cdots, (x-1)^{c(H//P_{s(r)})}t(H//P_{s(r)}; x, y)].$$

3 彩色多項式への応用

3.1 Tutte 多項式を用いた彩色彩色多項式 G:グラフ、 λ :色数、

$$P(G; \lambda) = (-1)^{r(E)} \lambda^{k(G)} T(G; 1 - \lambda, 0).$$

参考文献

- [1] A. Andrzejak, An algorithm for the Tutte polynomials of graphs of bounded treewidth, *Discrete Math.* **190** (1998), 39-54.
- [2] J. Oxley and D. Welsh, Chromatic, Flow, and Reliability Polynomials: the Complexity of their Coefficients, (2001).
- [3] http://www.misojiro.t.u-tokyo.ac.jp/ murota/lect-kisosuri/matroid041214.pdf