
E�cient Implementation of a

Minimal Triangulation Algorithm

Pinar Heggernes and Yngve Villanger

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
fpinar, yngvevg@ii.uib.no

Abstract. LB-triang, an algorithm for computing minimal triangula-
tions of graphs, was presented by Berry in 1999 [1], and it gave a new
characterization of minimal triangulations. The time complexity was con-
jectured to be O(nm), but this has remained unproven until our result.
In this paper we present and prove an O(nm) time implementation of
LB-triang, and we call the resulting algorithm LB-treedec. The data
structure used to achieve this time bound is tree decomposition. We
also report from practical runtime tests on randomly generated graphs
which indicate that the expected behavior is even better than the proven
bound.

1 Introduction

Many important graph problems are concerned with adding edges to a given
arbitrary graph to obtain a chordal supergraph, and the resulting chordal graph
is called a triangulation of the given graph. A triangulation H of G is minimal

if no subgraph of H is a triangulation of G. The �rst algorithms for computing
minimal triangulations appeared more than 25 years ago [12], [15] with O(nm)
time complexity, where n is the number of vertices and m is the number of
edges of the input graph. After a time gap of 20 years, the problem began
to be restudied [3], [4], [7], [14] in the following sandwich version: given an
arbitrary triangulation H of G, compute a minimal triangulation M of G with
G �M � H . The best known theoretical time complexity of computing minimal
triangulations, with or without the sandwich property, has remained as O(nm).

Algorithm LB-triang [1] presented a new characterization of minimal trian-
gulations, and also solved the sandwich problem, allowing the order in which the
vertices are processed as input. The time complexity of LB-triang was conjec-
tured to be O(nm), however this remained unproven since its presentation. (The
straight forward implementation suggested in [1] requires O(nm0) time, where
m0 is the number of edges in the resulting triangulation).

In this paper, we prove that Algorithm LB-triang can be implemented in
O(nm) time using a a tree decomposition of the input graph. In the start the
tree decomposition consists of only one tree node containing all the vertices of
G. At each step, the tree decomposition is re�ned by encountering and inserting
minimal separators of G into the data structure. At the end, the data structure

contains a clique tree of the computed minimal triangulation of G. We call
this new O(nm) time and O(m0) space algorithm LB-treedec. In addition to a
theoretical time complexity analysis of our algorithm, we also present runtime
results from a practical implementation.

This extended abstract is organized as follows. In the next section we give
the necessary background. Section 3 presents Algorithm LB-treedec and contains
the main results of this paper. Section 4 concludes the paper and mentions open
questions and future research directions.

2 Background

A graph is denoted G = (V;E), with n = jV j, and m = jEj. All graphs that we
work on are connected and simple. G(A) is the subgraph induced by a vertex set
A � V , but we often denote it simply by A when there is no ambiguity. A clique

is a set of vertices that are all pairwise adjacent. For all the following de�nitions,
we will omit subscript G when it is clear from the context which graph we work
on. The neighborhood of a vertex x in G is NG(x) = fy 6= x j xy 2 Eg. The
neighborhood of a set of vertices A is N(A) = [x2AN(x) � A, and we de�ne
N [A] = N(A) [A.

For a connected graph G = (V;E) with X � V , CG(X) denotes the set of
connected components of G(V �X). S � V is called a separator if jC(S)j � 2, an
xu-separator if vertices x and u are in di�erent connected components of C(S),
a minimal xu-separator if S is an xu-separator and no proper subset of S is an
xu-separator, and a minimal separator if there is some pair fx; ug such that S
is a minimal xu-separator. Equivalently, S is a minimal separator if there exist
C1 and C2 in C(S) such that N(C1) = N(C2) = S. Two separators S and S0

are crossing if there exist two components C1; C2 2 C(S), C1 6= C2, such that
S0 \ C1 6= ; and S0 \ C2 6= ;.

A chord of a cycle is an edge connecting two non-consecutive vertices of the
cycle. A graph is chordal, or triangulated, if it contains no chordless cycle of length
� 4. Edges that are added to an arbitrary graph G to obtain a triangulation H
of G are called �ll edges, with m0 = jE(H)j.

Theorem 1. (Lekkerkerker and Boland [11]) A graph G is chordal i� for every

vertex x in G, every minimal separator contained in NG(x) is a clique.

Algorithm LB-triang (Berry [1])
Input: A graph G = (V;E), and an order v1; v2; :::; vn on the vertices of G.
Output: A minimal triangulation H = (V;E + F) of G.
begin

H = G; F = ;;
for i = 1 to n do

for each connected component C in CG(NH [vi]) do
Make NG(C) into a clique by adding edge set F 0;
F = F + F 0; H = (V;E + F);

end

It is shown in [2] that the set of minimal separators included in the neigh-
borhood of a vertex x is exactly fN(C) j C 2 C(N [x])g. Thus with help of
Theorem 1 it can easily be shown that LB-triang produces a triangulation. The
proof that the computed triangulation is minimal relies on results from [10] and
[13], and involves showing that the computed minimal separators are pairwise
non-crossing. It should be noted that the set of minimal separators of G pro-
cessed in this way by LB-triang is exactly the set of all minimal separators of
the resulting minimal triangulation H .

The interesting part for the purpose of this paper is the time complexity of
LB-triang. It is mentioned in [1] that CH(S) = CG(S) and NH(C) = NG(C)
for each C 2 CG(S); thus the component search can be done in G rather than
in H , as described in Algorithm LB-triang. Despite this, proving an O(nm)
time complexity for LB-triang turned out to be a more di�cult task than �rst
expected. The most time consuming part is making the encountered minimal
separators into cliques by adding �ll edges. These �ll edges are not needed in
the component search, but they are needed in �nding NH [vj] at later steps j.
The problem is that each minimal separator, and thus each �ll edge, can be
encountered and inserted several times, which gives the need to keep a sorted
list of the minimal separators or the �ll edges so that redundant copies can be
removed. Such an approach requires O(nm0) time.

Our algorithm does not store the edges of each computed minimal separa-
tor, but rather stores the minimal separators as vertex sets, since these are all
cliques. Computing NH [vi] is not straight forward in this setting, and requires
scanning of some of the computed minimal separators. Our practical implemen-
tation of Algorithm LB-triang relies on two important structures, called tree
decompositions and clique trees.

De�nition 1. A tree-decomposition of a graph G = (V;E) is a pair

(fXi j i 2 Ig ; T =(I;M))
where fXi j i 2 Ig is a collection of subsets of V , and T is a tree, such that:

�
S
i2I Xi = V ,

� (u; v) 2 E) 9i 2 I with u; v 2 Xi, and

� for all vertices v 2 V , fi 2 I j v 2 Xig induces a connected subtree of T .

Thus each tree node corresponds to a vertex subset Xi, also called a bag (in
which the graph vertices are placed). We will not distinguish between vertex
subsets and their corresponding tree nodes. Consequently, we will refer to the
tree T when we mention the corresponding tree decomposition. More about tree
decompositions and their importance can be found in [6]. In our implementation,
we will let each edge (X;Y) of T contain the set of vertices in X \ Y . Thus we
will often refer to edges of T also as vertex subsets.

For chordal graphs, tree decompositions exist where the bags are exactly the
maximal cliques of the graph [8]. Such tree decompositions are called clique trees

[5]. One important property of clique trees which is related to our implementation
is the following.

Lemma 1. (Ho and Lee [9]) Let T be a clique tree of a chordal graph G. Every

edge of T is a minimal separator of G, and for every minimal separator S in G,

there is an edge (Ki;Kj) = Ki \Kj = S in T .

A chordal graph has at most n maximal cliques and n�1 minimal separators,
and hence the number of nodes and edges in a clique tree is O(n) [9].

3 LB-treedec: an O(nm) time implementation of
LB-triang

At each step i, Algorithm LB-triang identi�es and makes into cliques the minimal
separators of G (and H) included in NH(vi), where H is the partially �lled
graph so far. In our implementation these computed minimal separators are
stored as vertex lists. Thus computing NH(vi) is not straight forward as the �ll
edges are not actually added. However, at the beginning of step i, it is su�cient
to consider NG(vi) and the minimal separators computed so far, in order to
compute NH(vi), since an edge is a �ll edge of the transitory H if and only if
its endpoints belong to a previously computed separator. Our general approach
will be as follows. We start with a tree decomposition T of G consisting of only
one bag containing all the vertices of G. At each step, whenever we encounter a
new minimal separator S, we check whether S can be inserted into T as an edge
to re�ne the tree decomposition. We will show that if S can be inserted then
there is only one bag containing the vertices belonging to S and the vertices that
S minimally separates. We split this bag into two bags, insert the separator as
an edge between the two new bags, correctly couple the two new bags to the
rest of the tree through the neighbors of the old bag, and maintain in this way
a tree decomposition of G where the bags get smaller and smaller. This is the
intuition behind the implementation, and we will now give the formal details.
For the following discussions, let Tx denote the subtree of T induced by all tree
nodes containing graph vertex x.

3.1 Data structures and implementation details

We will �rst rewrite Algorithm LB-triang to operate on the tree decomposition
data structure. The new algorithm that thus results is called LB-treedec, where
the neighbors of a vertex are found through original edges and the already com-
puted separators, using the tree structure to extract this information. At step i
of the algorithm, let U(i) be the union of all minimal separators computed at
earlier steps containing vertex vi, and let UA be the union of all minimal sepa-
rators computed so far. Every vertex in U(i) is a neighbor of vi in the transitory
graph H since these minimal separators are cliques in H . Fill edges of H appear
only within minimal separators, thus U(i)[NG(vi) is the set of all neighbors of vi
at step i, including vi itself if U(i) 6= ;. In fact, it can be shown that no �ll edge
of H incident to vi is created after step i, thus NH [vi] = U(i) [NG(vi) [fvig.
Consequently, at every step i, the �nal adjacency set of vi in H is computed,
and can be inserted into H directly.

Algorithm LB-treedec

Input: A graph G = (V;E), and an order v1; v2; :::; vn on the vertices of G.
Output: A minimal triangulation H = (V;E + F) of G, and a clique tree T of H ;
begin

H = G; T = (fV g; ;); UA = ;;
for i = 1 to n do

(1) Compute U(i) using the separator information stored in the edges of T ;
NH [i] = NG(vi) [U(i) [fvig;
for each connected component C in CG(NH [i]) do

S = NG(C); UA = UA [S;
(2) if there is a bag X in T containing vi and S and a subset of C then

X1 = S [(X \ C); X2 = X \ (G� C);
(3) Replace X with X1, X2, and edge (X1; X2) = S in T ;
end

Steps of this algorithm marked as (1) - (3) need to be explained further. Step
(1) is more involved, and we will describe this step last. For the time being,
assume that the neighborhood of vi in H at step i of the algorithm is correctly
found.

Let S = NG(C) for a component C 2 CG(NH [i]) found at step i. S is a
minimal separator of G and of H , separating vi and a subset of C. If there is a
tree node X containing vi and S and any vertex of C, then this tree node can
be split into two tree nodes and S can be inserted as an edge between the new
tree nodes.

Lemma 2. Let S = NG(C) for a component C 2 CG(NH [i]) found at step i.

Then there is at most one bag X in the current tree T containing both (fvig+S)
and a subset of C.

Proof. Remember �rst that S is a minimal separator separating vi from C. For
every vertex u 2 C, we know that no previously computed minimal separator S0

contains both u and vi. Otherwise S and S0 would be crossing separators, and
this would contradict the correctness of Algorithm LB-triang.

Assume now on the contrary that there are two bags X1 and X2 that both
contain vi and S and at least one vertex belonging to C. Let u be a vertex of
C that belongs to X1 and x a vertex of C that belongs to X2. If u = x, then
we have a contradiction since every tree edge between X1 and X2 is a minimal
separator containing u and vi. Thus u 2 X1 � X2, and x 2 X2 � X1. No tree
edge on the path between X1 and X2 in T contains both u and x, and every tree
edge on this path contains S and vi. Since u and x do not appear together in
any bag on this path, there must exist at least one edge S0 that does not contain
any of u and x. This means that there is a minimal ux-separator S0 such that
(fvig+ S) � S0. Since S0 separates u and x in G, S0 must contain some vertex
of C. Since S0 contains both vi and a vertex of C, S and S0 are crossing, leading
to the desired contradiction.

Invariant 1. At each step of the algorithm, the tree T is a tree decomposition

of G and of the resulting minimal triangulation H.

Proof. We will prove this invariant by induction. The base case is true since a
tree with only one tree node containing all vertices of G is a tree decomposition
of both G and H .

Let S = NG(C) for a component C 2 CG(NH [i]) found at step i. If there
is no bag containing vi and S and a subset of C, no changes need to be done
in the tree, and we have still a tree decomposition. Otherwise, let X be the
bag of T containing vi and S and a subset of C. Assume that the invariant
is true for T . We will show, by explaining how X is replaced by X1; X2 and
the edge (X1; X2) = S, that the tree T 0 resulting from this operation is a tree
decomposition of G and H .

After the tree node X is removed and the tree nodes X1 and X2 are inserted,
the tree nodes that were previously incident to X must be connected to X1 orX2

instead. It can be easily shown that for any edge (X;Y) = X\Y = S0 previously
incident to X , S0 is a subset of X1 or X2 or both. Thus we simply connect each
such edge to that of the new tree nodes that it is a subset of (arbitrary one can
be chosen if it is a subset of both; a good idea is to choose the one that results
in a smaller diameter of the tree). We leave it to the reader to verify that the
new tree T 0 ful�lls the requirements of a tree decomposition, both for G and H .

We will now describe how to search for the tree node X e�ciently. We start
from a tree node U containing a vertex u of C and do a depth �rst search until
we �nd a tree node X that contains vi. If X also contains a vertex of C, then
by Lemma 2 we have found the unique tree node that we want to split. If X
does not contain a vertex of C, then by the connected subtree property of a
tree decomposition, we know that no tree nodes of T further away from U can
contain a vertex of C, and we can conclude that the tree does not need to be
updated. Every graph vertex u has a pointer to a tree node that contains u.
Thus the starting point of the search is decided in constant time. We will in the
next section prove that searching for vi in a tree node at step i is an amortized
constant time operation. In addition, the starting points of the searches at step i
belong to disjoint components of G, and thus the searches can be done in disjoint
subtrees of T by marking the already traversed paths and adding pointers as
shortcuts. What now remains to be explained is how to decide whether or not
X contains a vertex of C.

Let S = NG(C) for a component C 2 CG(NH [i]) found at step i, and let
U be a tree node of T containing a vertex of C. Let (Y;X) = S0 be the last
edge in a depth �rst search that starts from U in T and reaches a tree node X
containing vi. Then certainly, X contains a vertex of C i� S0 contains a vertex of
C. Thus, in addition to the above searches, we also need to check the last edges
leading to the tree nodes containing vi when the searches stop. These edges are
edges of T with exactly one endpoint in Tvi . Let us denote this set of tree edges
by Border(i). The sum of the sizes of these edges is O(m) as will be shown
during the time complexity analysis. Therefore, at each step i we can create
characteristic vectors for all these edges in O(m) time and space, and delete
these at the end of each step. Then checking each vertex of each component C
for membership in the desired Border(i) is a constant time operation per check.

We will now describe how to compute the union U(i). The main reason for
using the tree data structure is to be able to compute NH(vi) e�ciently. Note
that Tx is a connected subgraph of T for every x at each step of the algorithm,
due to Invariant 1. From the construction of T , it is clear that U(i) can be found
by computing the union of all the edges of Tvi . However, this may require O(m0)
time at each step, which we cannot a�ord. We have to compute this union in
a di�erent way. The main idea is that the sum of the sizes of the edges of Tvi
is O(m0), whereas the sum of the sizes of the edges belonging to Border(i) is
O(m). Now we show how these border edges can be used to compute U(i).

Observation 1. Let u and v be two vertices of G. A separator S containing

both u and v is present as an edge in T i� Tu and Tv share an edge � S in T .

Observation 1 gives an alternative de�nition of the desired union: U(i) =
fu j Tu shares an edge with Tvig. We de�ne the following disjoint vertex sets for
step i of the algorithm:

� Inner(i) = fu 6= vi j every edge of Tu is an edge of Tvig
� InnerOuter(i) = fu j Tu has at least one edge that is an edge of Tvi and at
least one edge that is not an edge of Tvig
� BorderOuter(i) = fu j Tu has no edges in common with Tvi and Tu has a
node containing vig
� Outer(i) = fu j Tu has no edges in common with Tvi and no node of Tu con-
tains vig

We can see that U(i) = Inner(i) [InnerOuter(i). The reason why we have
partitioned the vertices into these subsets is that some of these subsets are less
time consuming to compute than others, and we will therefore not compute
Inner(i)[InnerOuter(i) directly, but through set operations on the listed sub-
sets. The following connection should be clear: UA = Inner(i)[InnerOuter(i)[
BorderOuter(i) [Outer(i).

Border(i) is the set of edges (X;Y) in T such that X contains vi, and Y

does not contain vi. Border(i) can be computed readily during the depth �rst
searches of step i. The union of all vertices belonging to the tree edges (minimal
separators) in Border(i) gives us exactly (InnerOuter(i) [BorderOuter(i)).
However, we need to separate InnerOuter(i) from BorderOuter(i), and also
compute Inner(i), since our goal is to compute U(i) = Inner(i)[InnerOuter(i).

Let (X;Y) be an edge in Border(i) where X contains vi, and let u be a graph
vertex belonging to X\Y . For each such vertex u, we need to decide whether u 2
InnerOuter(i) or u 2 BorderOuter(i). A naive and straight forward approach
would be to scan every edge in Tvi incident to X to decide what kind of subtree
Tu is. If u does not appear on any such edge of Tvi then u 2 BorderOuter(i).
Otherwise, u 2 InnerOuter(i). Since we cannot a�ord to scan all the edges of
Tvi , we will avoid this by including enough information in each tree node so that
scanning edges that belong to Border(i) is enough. Each tree node X containing
vertex u has a variable Nu which is the number of the neighboring tree nodes in

T that also contain u. (See Figure 1.) Another variable Su is initialized to �1
when X is created. When the edge (X;Y) is being examined, for each vertex u
belonging to this edge, if Su < i then Su is updated to i, and Cu is updated
to equal Nu � 1. If Su = i then Cu is decremented. Clearly, if Cu reaches 0
during the scanning of the edges in Border(i), u belongs to BorderOuter(i).
Otherwise u belongs to InnerOuter(i). After all vertices u belonging to the
edges of Border(i) are processed, we will have identi�ed the sets InnerOuter(i)
and BorderOuter(i).

It remains to compute Inner(i). Observe that (Inner(i)[Outer(i)) is readily
computed since Inner(i)[Outer(i) = UA� (InnerOuter(i)[BorderOuter(i)).
Since every tree node that an Inner(i) vertex belongs to contains vi, and no tree
node that an Outer(i) vertex belongs to contains vi, Inner(i) is easily separated
from Outer(i). The computation of U(i) at step i of LB-treedec is summarized
in the following algorithm:

U(i) = UA; Inner(i) = U(i);
Compute Tvi and Border(i) by depth �rst search in T ;
for each edge S = (X;Y) in Border(i) with vi 2 X do

for each u in S do

if X:Su < i then

X:Su = i; X:Cu = X:Nu � 1;
else

X:Cu = X:Cu � 1;
if X:Cu = 0 then Remove u from U(i);
Remove u from Inner(i);

for each u in Inner(i) do
Let U be any tree node containing u;
if vi 62 U then Remove u from Inner(i) and U(i);

We use characteristic vectors to implement UA; U(i), and Inner(i), so that
membership can be tested and changed in constant time. Each of these vectors
require O(n) space. Observe that U(i) and Inner(i) are cleared and reused at
each step of Algorithm LB-treedec.

We have thus explained the details of Algorithm LB-treedec. Note that all
the minimal separators of H are inserted into T during the algorithm by the
correctness of LB-triang [1]. From this and from the proof of Invariant 1 it
follows that T at the end of the algorithm is actually a clique tree of H .

The data structure details of Algorithm LB-treedec are illustrated in Figure
1. Given the discussion of the implementation and of the complexity analysis, it
should be clear how the shown structures work. We would like to stress that tree
nodes and tree edges are not implemented as characteristic vectors in general.
Thus each tree node and each tree edge has simply a sorted list of the vertices
it contains. To start with the single tree node requires �(n) space. Every time a
tree node is split into two tree nodes because of the insertion of a new minimal
separator S, the space requirement increases by O(jSj). Since every inserted

minimal separator of H has to be the neighborhood of a distinct component,
the sum of the sizes of all the separators of H is O(m0). Thus the total space
required is O(m0) including the mentioned characteristic vectors, assuming that
n � m0.

Tree−node pointer vector[n]

Pointer to tree−node

Pointer to opposite edge

Pointer to tree−node

Pointer to opposite edge

a)

b)
c)

d)

The tree T

vector[n]

Tree−edge

Tree−node vertex pointer list

Vertex list

Tree−node

3

1

0

0

2

1

0

0

1

0

0

0

Tree−node element

Tree−node element

Tree−node element

Vy

Ny

Sy

Cy

Vx

Nx

Sx

Cx

Vu

Nu

Su

Cu

 (graph vertex u)

 (graph vertex x)

 (graph vertex y)Vertex list

Tree−node

Edge pointer list

Edge pointer list

Pointer to tree−node

Pointer to opposite edge

Tree−edge

Tree−node vertex pointer list

Tree−edge

Tree−node vertex pointer list

Tree−node

Edge pointer list

Vertex list

Tree−node

Edge pointer list

Vertex list

UA

Fig. 1. a) The tree data object where each graph vertex has a pointer to a tree node
containing it. b) The interaction between a tree edge and a tree node. c) The relation-
ship between a tree node and the graph vertices contained in it. d) An edge between
two tree nodes. Only vectors that end with [n] have lenght exactly n. The length of
each of the other lists is the number of vertices it actually contains.

3.2 Time complexity analysis

Observation 2. The total number of tree nodes created during Algorithm LB-

treedec is less than 2n.

Lemma 3. Let k be the total number of all requests asking whether or not a

given vertex belongs to a given tree node in T during Algorithm LB-treedec.

Then the total time for all requests is O(n2 + k).

Proof. In our data structures, each tree node X contains a sorted list of the
vertices that belong to X . In addition, there is a pointer pX in X that points
to the most recently requested element in X . Each time we receive a request
to check whether or not vi belongs to X , we scan the vertices in the locations
between the previous position of this pointer until we reach vi or a vertex vj
with j > i. The pointer is moved during this scan. Since element vi is never
requested at other steps than i, each tree node X is scanned exactly once. Fol-
lowing requests involving vertex vi at step i are handled in constant time by
simply checking whether pX is pointing to vi or to a larger vertex. When a tree
node is split into two new nodes, the pointers of the new tree nodes are moved
to the beginning of the lists again. Thus in the worst case, each tree node ever

created during the algorithm is scanned once. Since at most 2n tree nodes are
created by Observation 2, the total time is O(n2 + k).

The number of such requests during the whole algorithm in O(n2) since the
depth �rst tree searches at each step i are done in disjoint subtrees and require
O(n) requests asking whether or not vi belongs to the tree nodes traversed by
the searches. Border(i) is also computed during the same search. However, we
need to show that the sum of the sizes of the minimal separators (or tree edges)
contained in Border(i) = O(m). Recall that at step i, both deciding which tree
nodes that contain vi should be split, and the computation of U(i) require the
scanning of Border(i) tree edges.

Let I = fx j x belongs to a tree node of Tvig. Consider the graph G(V � I).
The number of minimal separators belonging to Border(i) is at most the number
of connected components of this graph. Remember that each minimal separator
S in Border(i) is de�ned as S = NG(C) for distinct connected components C
of G(V � I). Thus the sum of the sizes of all involved minimal separators is
at most twice the number of edges in G, O(m). Consequently, at step i, the
scanning of Border(i) edges and the creation of the mentioned characteristic
vectors can be done in O(m) time. In addition, at each step i, we might have
to check every vertex of every computed component C for membership in the
appropriate Border(i) edge. Since these components are disjoint subgraphs of
G, and membership test can be done in constant time for Border(i) edges, this
is an O(n) operation for each step i.

We have thus proven the following.

Theorem 2. Algorithm LB-treedec requires O(nm) time.

3.3 Practical runtime tests

The runtime tests of Algorithm LB-treedec exhibit interesting properties. We
have run the code for the implementation on many random graphs and have
observed that LB-treedec behaves in an O(n2) fashion rather than O(nm) in
practice. The implementation is coded using C++ and STL, and the practical
tests are run on a machine with Intel Pentium III 1GHz processor and 512 MB
RAM. Our code can be obtained via anonymous ftp from ftp.ii.uib.no at
directory pub/pinar/LB-treedec/.

A classical O(nm) time algorithm is Lex-M [15]. We have also coded this
algorithm in C++, and tested its runtime against our LB-treedec. The �rst chart
in Figure 2 shows the results of these tests. We have tested random graphs, all
with the same number of vertices, and increasing the number of edges. The x-
axis shows the number of edges of each graph as a percentage of all possible
edges. As we can see from the �rst chart in Figure 2 the runtime of LB-treedec
is superior to Lex-M except for very sparse graphs. Our runtime is highest when
there are few edges in the input graph. As the input graph gets denser, the
runtime decreases.

We have then examined when the maximum runtime occurs, and our tests
indicate that the graphs that require the maximum runtime have O(n) edges.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

% Of edges

LB−triang
Lex−M

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

N
um

be
r

of
 e

dg
es

 in
 th

e
m

os
t h

ea
vy

 c
om

pu
ta

tio
n

Number of vertices in the generated graphs

Fig. 2. The chart on the left shows the runtimes of Lex-M and LB-treedec compared
on random graphs all with 1000 vertices and increasing number of edges. The chart on
the right shows, for numbers n 2 [1000; 2000] of vertices, the numbers of edges in the
graph on n vertices that requires maximum LB-treedec runtime.

This is illustrated by the second chart of Figure 2. To do this, we generated,
for each number n of vertices shown on the x-axis, connected random graphs
with all possible numbers of edges, and examined for each n the number of
edges in the graph that required the highest runtime. As can be seen from the
chart, the worst runtime occurs when the input graph is sparse. The straight
line corresponds to 10n.

4 Conclusion and further work

We have presented Algorithm LB-treedec which is an O(nm) time new version
of Algorithm LB-triang. LB-treedec achieves this time bound by utilizing a tree
decomposition data structure and carefully placing links between elements that
are related. The space complexity of LB-treedec is O(m0) where m0 is the num-
ber of edges of the output graph H . In practical tests, Algorithm LB-treedec
exhibits an interesting O(n2) runtime pattern on randomly generated graphs. In
particular, it is faster than the classical Lex-M algorithm of the same theoretical
time complexity. However, special graphs on which LB-Treedec requires �(nm)
time can be generated, thus an important open problem is whether or not Algo-
rithm LB-triang can be implemented within O(n2) theoretical time bound. It is
still an open question whether or not minimal triangulations can be computed
in O(n2) time in general.

The original Algorithm LB-triang is on-line, which means that the order in
which the vertices are processed can be chosen during the course of the algorithm.
Algorithm LB-treedec can be made on-line at the cost of more space. If the tree
nodes are implemented as characteristic vectors of length n, then membership of
each graph vertex in a tree node can be tested in O(1) time. This on-line version
requires O(nm) time and O(n2) space. An interesting question is whether an
on-line version can be implemented in O(nm) time and O(m0) space.

Every tree decomposition of a graph G corresponds to a triangulation of G.
Many important graph theoretical problems search for triangulations with var-
ious properties. One of the important NP-hard problems is deciding treewidth,
which is equivalent to �nding a triangulation where the largest clique is as small
as possible. Algorithm LB-treedec gives interesting tools that might be useful
for new heuristics for this kind of problems.

Acknowledgment

The authors thank Genevieve Simonet for her useful comments.

References

1. A. Berry. A wide-range e�cient algorithm for minimal triangulation. In Proceedings
of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

2. A. Berry, J-P. Bordat, and P. Heggernes. Recognizing weakly triangulated graphs
by edge separability. Nordic Journal of Computing, 7:164{177, 2000.

3. J. R. S. Blair, P. Heggernes, and J. A. Telle. Making an arbitrary �lled graph mini-
mal by removing �ll edges. In R. Karlsson and A. Lingas, editors, Algorithm Theory

- SWAT '96, pages 173{184. Springer Verlag, 1996. Lecture Notes in Computer
Science 1097.

4. J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making
�lled graphs minimal. Theoretical Computer Science, 250:125{141, 2001.

5. J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique
trees. In J. A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and

Sparse Matrix Computations, pages 1{30. Springer Verlag, 1993. IMA Volumes in
Mathematics and its Applications, Vol. 56.

6. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1{21,
1993.

7. E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In R. H.
M�ohring, editor, Graph Theoretical Concepts in Computer Science - WG '97, pages
132{143. Springer Verlag, 1997. Lecture Notes in Computer Science 1335.

8. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Combin. Theory Ser. B, 16:47{56, 1974.

9. C-W. Ho and R. C. T. Lee. Counting clique trees and computing perfect elimination
schemes in parallel. Inform. Process. Lett., 31:61{68, 1989.

10. T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum �ll-in of aster-
oidal triple-free graphs. Theoretical Computer Science, 175:309{335, 1997.

11. C. G. Lekkerkerker and J. C. Boland. Representation of a �nite graph by a set of
intervals on the real line. Fundamenta Mathematicae, 51:45{64, 1962.

12. T. Ohtsuki. A fast algorithm for �nding an optimal ordering in the vertex elimi-
nation on a graph. SIAM J. Comput., 5:133{145, 1976.

13. A. Parra. Structural and algorithmic aspects of chordal graph embeddings. PhD
thesis, Technische Universit�at Berlin, 1996.

14. B.W. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl., 23(1):271{
294, 2001.

15. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5:266{283, 1976.

